Plant microtubule cytoskeleton complexity: microtubule arrays as fractals.
نویسندگان
چکیده
Biological systems are by nature complex and this complexity has been shown to be important in maintaining homeostasis. The plant microtubule cytoskeleton is a highly complex system, with contributing factors through interactions with microtubule-associated proteins (MAPs), expression of multiple tubulin isoforms, and post-translational modification of tubulin and MAPs. Some of this complexity is specific to microtubules, such as a redundancy in factors that regulate microtubule depolymerization. Plant microtubules form partial helical fractals that play a key role in development. It is suggested that, under certain cellular conditions, other categories of microtubule fractals may form including isotropic fractals, triangular fractals, and branched fractals. Helical fractal proteins including coiled-coil and armadillo/beta-catenin repeat proteins and the actin cytoskeleton are important here too. Either alone, or in combination, these fractals may drive much of plant development.
منابع مشابه
TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells.
Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microt...
متن کاملComputer simulation and mathematical models of the noncentrosomal plant cortical microtubule cytoskeleton.
There is rising interest in modeling the noncentrosomal cortical microtubule cytoskeleton of plant cells, particularly its organization into ordered arrays and the mechanisms that facilitate this organization. In this review, we discuss quantitative models of this highly complex and dynamic structure both at a cellular and molecular level. We report differences in methodologies and assumptions ...
متن کاملMicrotubule Components of the Plant Cell Cytoskeleton.
Like the skeleton of any vertebrate animal, the cytoskeleton plays a major role in detennining the three-dimensional form of a cell. However, in plants the cytoskeleton is probably more analogous to a scaffold, being directly involved in the establishment of cell morphology and less involved in the maintenance of cell shape once the relatively rigid cell walls are in place. The term "skeleton" ...
متن کاملAn Atypical Tubulin Kinase Mediates Stress-Induced Microtubule Depolymerization in Arabidopsis
BACKGROUND As sessile organisms, plants adapt to adverse environmental conditions by quickly adjusting cell physiology and metabolism. Transient depolymerization of interphase microtubules is triggered by various acute stresses and biotic interactions with pathogenic organisms. Although rapid remodeling of plant microtubule arrays in response to external stresses is an intriguing phenomenon, th...
متن کاملThe role of dynamic instability in microtubule organization
Microtubules are one of the three major cytoskeletal components in eukaryotic cells. Heterodimers composed of GTP-bound α- and β-tubulin molecules polymerize to form microtubule protofilaments, which associate laterally to form a hollow microtubule. Tubulin has GTPase activity and the GTP molecules associated with β-tubulin molecules are hydrolyzed shortly after being incorporated into the poly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 63 2 شماره
صفحات -
تاریخ انتشار 2012